Jump to content

Recommended Posts

On 11/3/2022 at 9:58 AM, Solstice_Lacer said:

How about this one: adding baking soda to the carbonated water ?

Very creative! I think the only way to increase the CO2 is through pressure though. Water would not dissolve nearly the amount of CO2 in seltzer under normal atmospheric pressure as it can when 'forced' to by pressured carbonation. 

But chemistry can seem schizophrenic at times. In this case, CO2 in water makes Carbonic Acid. Adding baking soda as @Guppysnail mentioned raises the pH so it's no longer carbonic acid but in fact becomes Sodium Hydroxide or Lye!  

The other common trait of all pressurized solutions being something called nucleation. Basically, this means if you give it a point at which it can release pressure, in this case releasing the CO2 from the water, it does so mostly at that point. This is why seltzer stays relatively carbonated until you disturb it or insert something like a straw into it and that object then gets covered in CO2 bubbles. The straw then becomes the 'nucleus' of the CO2 exiting the water. 

As an old Breaking Bad fan, I could always relate to Walter White's statement that; "Chemistry is magic".

Of course, he was making crystal meth! 🤣

  • Like 1
  • Thanks 1
  • Haha 2
  • Love 1
Link to comment
Share on other sites

On 6/15/2022 at 9:25 PM, dasaltemelosguy said:

 

1344495578_ReverseRespirationLogoCROPPED.jpg.ac99c66a2438af2d065c7c6139d3f1c7.jpg

Reverse Respiration; The Quick-Guide

Reverse Respiration is a new, aquatic plant cleaning method designed by multiple COOP forum members to remove pests and algae off of aquatic plants without inflicting any plant damage, and the only residue it leaves is water.

In fact, Reverse Respiration paradoxically, appears to accelerate growth and plant health. There will be much more on this forthcoming in; “Reverse Respiration Growth Augmentation”.

Concisely, how Reverse Respiration works is extremely simple:

It places plants in a high pressure, pure-CO2 solution that asphyxiates the snails, worms, eggs, aerobic bacteria and insect larva but actually enriches the plants with an intense CO2 environment. This is done for 12 hours, in the dark.

The plants are then placed in plain water (an O2 environment) for at least 30 minutes which suddenly changes the pressure which kills off any remaining eggs or anaerobic bacteria (if any). This last step also helps destroy any remaining algae.

Since testing began on Reverse Respiration in January 2022, we have seen no surviving pests, most algae are killed and no plant damage has been observed and although it’s early, we’re now even seeing some growth acceleration.

As Reverse Respiration is quite new, more field testing will naturally improve our data quality. We feel more field experience is needed but there’s ever mounting evidence from new users posts to suggest that Reverse Respiration is the least toxic yet most comprehensive plant disinfection technique available that does no damage to the plants and has no residue.

Below are abbreviated instructions to perform Reverse Respiration.

Please post your results on the main Reverse Respiration thread below as we are accruing data from all users to improve the quality of data of the entire experiment. 

If you wish to learn how and why Reverse Respiration works in great detail, you may read the results of the full, 6-month experiment and/or post your results on the thread here:

Reverse Respiration Full Experiment

    Instructions for Performing Reverse Respiration

What You’ll Need:

                                           1873859236_73-SELTZERBOTTLE.jpg.e33d8be8dd346cdcdde1100d60416805.jpg

Common Seltzer Water.

Container with loose fitting lid.

Dark area for 12 hours.

You’ll need as much seltzer as is required to fully submerge the plants you are cleaning. It makes the plants quite buoyant such that you’ll need to weigh them down to keep them submerged.

1-Rinse the plants. Fully submerge the plants in freshly opened seltzer water.

2-Cover the top with a towel or other loose-fitting lid (should not be airtight) and place in the dark for 12 hours.

3-After 12 hours, remove the plants and soak in plain water, preferably aerated for 30 minutes or more. Usually, tank water is sufficiently oxygenated such that you may skip this step.

4-Rinse to remove remnants of pests or dead algae.

5-Place in the tank.

You may also watch microscope videos of many of our tests via the links throughout the experiment and you may download all of the reference and citational materials we used in PDF form from a link at the end of the experiment.

Please post your results and try to include pictures at the end of the full experiment thread as the more data we acquire, the more comprehensive Reverse Respiration can become.

                                                                    1344495578_ReverseRespirationLogoCROPPED.jpg.ac99c66a2438af2d065c7c6139d3f1c7.jpg

Note:   We have recently observed that some sparkling waters may not have enough carbonation to perform Reverse Respiration. Please use only pure seltzer water or unflavored club soda as we                                                                        have tested these extensively                                                                      with to date, 100% success.

Thank you for trying Reverse Respiration.

 

                                                             *

                             What follows is the complete experiment:

 

A Forum Collaboration

Sometime in early January 2022, we began an experiment to design and extensively test a new, chemical-free, aquatic plant cleaning method known as Reverse Respiration.

We began with three unrelated technologies, two energy-based and one-gaseous-based as we were uncertain which, if any, would succeed or prove efficacious enough to be viable. As each of the nominated technologies was tested and analyzed, we eventually distilled the process down to the gaseous-based technology nominee, Reverse Respiration.

We were greatly assisted throughout the experiment by many consultations with @OnlyGenusCaps and @Odd Duck such that it eventually became a collaborative effort involving four COOP forum members: @OnlyGenusCaps and @Odd Duck as consultants as well as @Guppysnail and myself operationally.

@OnlyGenusCaps quite literally initiated the research. He encouraged and vigorously supported designing the experiment, literally from its embryonics. As we did not yet know which direction this might take, all three different technologies were fully developed and enjoyed a full, factorial experiment designed for each technique. These experiments for each were performed to verify the viability, or to reject a concept, and @OnlyGenusCaps was kind enough to review and advise on every one of them.

Ultimately, two of the methods enjoyed partial success but suffered insufficient proofs and much of the performance was too mired in theory for us to assert claims with any degree of authority.

However, for Reverse Respiration, we were able to fully develop proofs for each proposal and concept, all of which are available to anyone for download and review (see links at end).  

The initial concept was born in a discussion with @OnlyGenusCaps. He recognized the potential as I was unaware of the current plant cleaning methods and their limitations. @OnlyGenusCaps convinced me that the potential was great enough to warrant the research.

As an expert in plant physiology, @OnlyGenusCaps has been an invaluable consultant throughout the testing. He analyzed our microscope images and videos and helped us identify and verify what we had recorded. His input, data and advice and continuous encouragement literally made this manifest. This experiment simply would not have been possible without his help.

@Odd Duck, a veterinarian and authority in multiple related fields, reviewed and edited our documents and was a consultant for us as well. She graciously offered and examined our many microscope images and videos, and her observations led to redirecting our efforts to a pH theory that eventually led to proofs for the entirety of the process. Reverse Respiration might not have been fully understood without her help.

She also was extremely kind to review and edit the entire lengthy document and made corrections and suggestions as well. It truly would have been a deeply inferior product without her expertise and input.

Just one month into the experiment, it began to reveal its reach was beyond mere plant disinfection when an unusual post-cleaning growth acceleration was noted. And although the initial intent was only for plant disinfection, I was contacted by @Guppysnail as she was the first to observe that Reverse Respiration behaved as both an algaecide and potentially, a growth stimulant.

I’m no expert in this area nor do I have enough experience with growing aquatic plants to speak with authority, so to that end, I found myself repeatedly consulting with this knowledgeable, veteran aquarist who would no doubt recognize and implement growing techniques that would escape my observation.

@Guppysnail’s input became ever more invaluable and frequent, identifying growth patterns, their indications, species-specific conditions and behavior, as well as identifying pests.

By then, the experiment expanded to 2 locations and 14 tanks such that we elected to make this experiment a collaboration.

To that end, @Guppysnail and I partnered on this piece both operationally and as co-authors and her commentary is indicated throughout the article.

Growth stimulation and observation, of course, take far more time for results than mere disinfection. As such, while @Guppysnail is a co-author of this article, you’ll see much more of her content in Part-2: Growth Augmentation in the coming months.

Again, I truly do apologize for the length. I failed to find a direction forward that was more concise without neglecting proof of concept, and we didn’t want to present any concepts without a minimum of one proof; many have several proofs and even some precedents.

At the end of the article, you may find all of the imagery, videos, university and laboratory studies in PDF form and the citations used during the entirety of the experiment. This content is free to download or redistribute and all the links are at the end of the article.

I only hope the length does not dissuade anyone from reading it!  But thank you once again for giving me a space to present results of my experiments and for allowing me to take so much of your time.

1344495578_ReverseRespirationLogoCROPPED.jpg.ac99c66a2438af2d065c7c6139d3f1c7.jpg

Reverse Respiration 1-AMPM1.jpg.137df26b60edd2cd644abed7a652d646.jpg2-AMPM2.jpg.e11a0bbff906b950573d383386c521e4.jpg   

A Chemical-Free Technique for the Removal of Worms, Eggs, Diatoms and Algae from Aquatic Plants in Less than 24 Hours Without ANY Residue

Reverse Respiration disinfects aquatic plants without chemicals or special equipment by simply alternating the CO2 levels in the water in cycles that favors plants but not pests.

Plants require CO2 and O2 during their day and night cycles. Reverse Respiration works by denying oxygen to pests during the CO2 cycle of the plants. So, with the plants immersed in a pure CO2 solution, they respire normally but all of the pests are asphyxiated. Then the next cycle is oxygenated, denying CO2 to any anaerobes. In both cases, when the plants desire CO2, we exclude O2, and the aerobic pests perish. When the plants desire O2, we exclude CO2, and the anaerobe pests perish. Upon completion some 12 hours later, there are no pests, no eggs, no algae, and the only residue is water.

3-CALENDAR.jpg.620a100048b1791c191e8fe85546f10c.jpg

The original experiment design had a time frame of two months. This included a month of promoting pest breeding in the infested plants under test. Additional time was required post-cleaning to observe for long term plant damage or growth, and to observe if any eggs remained fertile. To that end, the experiment was expanded to six months, fourteen tanks in two locations, in order to facilitate testing all of the nominated technologies.

However, initial observations of post-disinfection growth stimulation first noted by @Guppysnail caused us to extend the process an additional six months and is presently ongoing. A followup article by @Guppysnail, “Part 2: Growth Augmentation,” will explore several technologies that one can easily apply to stimulate growth, improve survival rates, and accelerate ‘melt’ and regrowth.

Categorically Speaking

The method and time for expiration of all the snails and worms we saw were similar, but vastly different than the timing for algae and live eggs. To that end, we’ve grouped the parasites into two categories, based upon the time required for expiration: Dynamic Entities (snails, worms, all pests with motility) and Static Entities (non-motile, i.e., algae, diatoms, eggs).

Dynamic Entities identified (there were innumerable unidentified!) in the tests:

Ostracodes (crustaceans)

Various Copepods (crustaceans)

Rhabdocoela (flatworms)

Various Nematodes (roundworms)

Planaria (flatworms)

Detritus worms

Collembola, common name springtails (hexapods)

Pond snails

Bladder snails

Ramshorn snails

Multiple (black and clear) smaller snails

Limpets (snails) 

Hydra (simple invertebrates)

Aphids

Insect larvae

Static Entities included the plants used in the test:

Cryptocoryne retrospiralis

Cryptocoryne wendtii ‘Green’

Vallisneria Contortionist

Anacharis (Egeria densa)

Susswassertang

Java Moss

Hornwort

Java Fern

Marimo Ball

Rotala rotundifolia

Anubias

Amazon Sword

 

 4-HAIR.jpg.1fce02209144ecb10694aef5c847f878.jpg  5-BBA.jpg.4b5ef66fec4c0664859827dd4a207b37.jpg  6-GSA.jpg.2c5989a70f5352bac813f627c1f5af5c.jpg 7-DIATOMS.jpg.e19a83470b017dedf5314dbda3a1828e.jpg 548103761_8-SNAILEGGS.jpg.fa6172e05b2a1613535e75fbe89d82ee.jpg

                                           Hair                                                   BBA                                                      GSA                                             Diatoms                                         Snail Eggs

Static Entities included algae and pest eggs under test

 

Please note: Throughout this article, we’ll be taking some semantic license in categorizing for brevity and consistency.

All plant cell content that is not chlorophyll-a will be referred to as non-chlorophyllic cell contents (all non-chlorophyllic enzymes, lipids, pigments and proteins, etc.).

All references to gas spaces in plants, regardless of location, will be referred to as chymatous zones.

 

Plant Damage

The first casualty in plant cleaning is inevitably some plant damage and usually some mass loss. Comprehensive testing requires control batches (samples without changes imposed) that very closely mirror the batches under test. The “controls” are parameters where we have natural or original vs a sample under test.

9-ALUM.jpg.7a8927230445fbbecd381317f92de227.jpg 630057988_10-HYDROGENPEROXIDE.jpg.8c25ce87aaf14ae0bf239acd3cf64dba.jpg 11-VINEGAR.jpg.1204c9a056b6e141fc5ce2f03c4f351a.jpg 1396895229_12-CHLORINEBLEACH.jpg.f56a80b171416136c131ef452d3cf63c.jpg 1911916685_13-REVERSERESPIRATION.jpg.00489657aa430d88d24ede2bb182e90f.jpg 14-UNTREATED.jpg.ebb734280eed1fa33e19434d8daea380.jpg     

                               Alum                            Hydrogen Peroxide                              Vinegar                               Chlorine Bleach                    Reverse Respiration                          Untreated

Our first control was a microscopic examination of the cells and content from an anacharis leaf treated with one of four popular aquatic plant cleaning methods: alum, hydrogen peroxide (H2O2), vinegar, and chlorine bleach, as well as Reverse Respiration. Below we have specified timing and quantities for each procedure for a more linear comparison.

Alum: 1 tablespoon per gallon, 2-day treatment.

 

Relatively gentle, alum did minor damage to chloroplasts, but alum’s extreme acidity caused substantial dissolution of non-chlorophyllic enzymes and proteins (usually brown or yellow in color). Vascular activity continued, that and being multicellular are why the plant largely recovered from the damage.

Anacharis Cleaned with Alum

Hydrogen Peroxide (H2O2): 1 part 3% H2O2 + 1 part water, 10-minute treatment.

A mild antioxidant, H2O2 partially dissolved some non-chlorophyllic enzymes and proteins and partially oxidized (yellowing) the chloroplasts. Vascular activity continued, that and being multicellular are why the plant largely recovered from the damage. 

Anacharis Cleaned with Hydrogen Peroxide

Vinegar: 1 part vinegar to 15 parts water, 5 minute treatment. Vinegar treatment resulted in minor non-chlorophyllic enzymes and proteins dissolution from extreme acidity but less damage to chloroplasts. Vascular activity continued, that and being multicellular are why the plant largely recovered from the damage. 

Anacharis Cleaned with Vinegar

Chlorine Bleach: 1 part bleach to 19 parts water, 2 minute treatment (neutralized with dechlorinator).   Virtually all non-chlorophyllic enzymes and proteins were removed and approximately half of the chloroplasts were killed, making this the most caustic of all treatments tested. Vascular activity continued, that and being multicellular are why the plant largely recovered from the damage. 

Anacharis Cleaned with Bleach

Reverse Respiration: 12 hours in CO2 solution in the dark followed by 30 minutes plain, aerated water in the light. With Reverse Respiration, we experienced almost no enzyme loss. Chloroplasts were a brilliant green from the intense CO2 infusion and appeared nearly identical to the untreated plant. Non-chlorophyllic cell contents (usually brown to yellow in hue) were clearly visible and virtually unchanged from untreated plants. Vascular activity is dense and has rapid chloroplast activity, almost identical to an untreated plant.

Anacharis Cleaned with Reverse Respiration  and  Anacharis Untreated

There was little question that Reverse Respiration by far is the gentlest plant cleaning method we tested.  Of all the techniques tested, within the limits of visual, microscopic analysis, it inflicted the least damage to the cell contents, proteins, enzymes and chloroplasts, and the only cleaning process that did not slow or reduce vascular activity.

Tales from the CRYPTS

by @Guppysnail

Most aquatic plants are grown with their leaves ‘emerged’ in air vs submerged. This is much less expensive and enjoys a higher rate of success than when grown fully submerged. However, the leaves evolve differently in air, thicker and denser, as CO2 is much easier to access and more plentiful in air.

594824066_15-IMMELTINGGIF.gif.b2dc6a5b0770146becd2805e3a3b0ed6.gif

When eventually submerged, they cannot perform metabolically and begin to rot…the infamous “crypt melt.” This is normal, and once the old growth rots and falls away, new growth will replace it over time. As they are thinner and have less mass than most plants, even water changes or other significant events can send a crypt or a val spiraling into a melt/regrowth cycle.

The reuptake of the ‘melting’ plant’s rotted material as nutrients, known as remobilization, occurs, but this takes more energy and time than if the leaves are pruned. Pruning helps initiate the start of new growth, as there are no leaves for nutrients or respiration triggering new growth. The new leaves, of course, grow under water and are now adapted for an aquatic environment. They tend to be thinner and more exposed to the environment for improved access to nutrients and CO2 directly from the water but primarily due to the CO2 being not as plentiful under water.

1606146763_16-PHPRUNER.jpg.15973b7b7f4e56ce737d4236b758fd5f.jpg

Reverse Respiration accelerates the melting cycle by chemically simulating the pruning process on dead and dying tissue. Once again, we are taking some semantic license, so I’ll be referring to this phenomenon as “pH Pruning”. pH Pruning is manifested as a form of accelerated dissolution of exposed, decaying (melting) cellular matter, accelerating the ‘melt,’ by exposure to the low pH of the CO2 solution. The CO2 solution dissolves the decaying matter at a much greater rate than normal decay.

Reverse Respiration seems to accelerate both the decay of the dying organics and the replacement with new, healthy growth, although the latter may be due entirely to the former. There’s some suggestion that the dissolving of decaying material in concert with the intense CO2 charging of the chloroplasts may be a factor in the growth stimulation we initially observed (see “Val” images below).

This would NOT occur if the tissue was healthy and intact, for there would be a multicellular and vascular buffer affording time before any form of dissolution occurs. The rapid dissolution of the decaying matter takes place because of the phenomena cited in the section on pH shifting (see “pH Shifting” below).

What we found was a stark contrast between the way healthy plants reacted vs damaged ones. No healthy plants, leaves, stem or roots showed any discernable damage.  Those that were previously ailing, however, melted or distinctly showed more damage over time once returned to the aquarium. 

Note these plants and plant parts were the ones that were already dying.  Once leaves and stems are damaged or dying, they will not recover in any situation treated or not treated. Healthy growth is not affected, and new growth continues unaffected.

799696783_17-ANACHARISGPYS.jpg.b38de4c2edad6b74f7e287907d37b859.jpg

Anacharis elodea densa

In this picture the are several strands of Anacharis elodea densa.  All were treated using Reverse Respiration.  The leaves most heavily infested with BBA are the ones that were already dead.  Most algae will take advantage of dying and dead leaves and the excess nutrients they release in the process of dying. Those not infested but unhealthy leaves are turning clear and will melt entirely.  Left untreated those leaves would melt away on their own but over a longer period of time.

1905968920_18-VALLEFTGPYS.jpg.f7f6b1597826f535767f6e0c5ae1c9ce.jpg  661709219_19-VALRIGHTGPYS.jpg.6236930f4e2d5b6e709f027b73d6968d.jpg 

Freshly planted Val leaves treated with Reverse Respiration are here beginning their classic’ melt’ cycle.  New growth has already begun unusually early, well before the melt cycle is complete.

Many of those unhealthy leaves still appeared healthy to the naked eye but were not. One common observation when purchasing aquatic plants grown emersed is that they appear greener and firmer than they would under water. This is because they are, but it is due to being grown in air (see above) and these will die off for new growth once submerged.

Under a microscope we are able to see the vascular tissue of the plants in operation. The Xylem and Phloem of the vascular system carry nutrients and water to and from the roots and leaves.  The vascular activity delaying cell saturation of the solution protects healthy plants during Reverse Respiration. 

·       The visibly dead and dying have no chloroplast movement under a microscope.  Untreated Melting Val

·       The ‘healthy to the naked eye but in the process of dying’ components show vastly reduced chloroplast movement or almost none at all under a microscope.  Treated Melting Val

·       Healthy vascular activity is easily seen under the microscope in the undamaged leaves with chloroplast movement being rapid and dense. Untreated Val

Many trials were done on healthy and unhealthy plants producing these same results.  The dead, red BBA is eaten by aquarium inhabitants.  Tanks that did not have inhabitants to eat it saw the killed BBA turn red, and eventually it turned white and disintegrated.

           1543754927_20-HEALTHYVALUNTREATEDGPYS.jpg.41d8a1092a731b383c1cfbc5aa3af760.jpg 1374921883_21-VALMID-MELTTREATED.jpg.23a19310df574605e8f0234c8a8470df.jpg 1829757058_22-HEALTHYVALTREATED.jpg.8d36d473041486b6ecc0e1554c58f2c8.jpg

                                                                      Healthy Val Leaf Untreated                        Val Leaf beginning Melt Treated                         Healthy Val Leaf Treated

Notice in the untreated, healthy leaf, the chloroplasts are widely distributed and easily discernable. In the untreated leaf with ‘melt’ beginning, you can see chaotic chloroplast distribution and clusters indicating low or no metabolic activity. The Reverse Respiration treated leaf looks nearly identical to the untreated, healthy leaf with highly discernable and plentiful chloroplast distribution, the only difference being an intense green from the saturation of the chloroplasts from the CO2 solution.

To that end, our next control for this test was plant mass, that is: Does it lose any mass during the cleaning? We weighed the plants dry (when possible) to retain accuracy, or by using a fluid displacement method. Fluid displacement is more accurate than just weighing, since it ignores water weight on the plant; or you can weigh portions of the plant without cutting to determine if there was any measurable mass loss after cleaning.

1981809554_23-UNEXPECTEDWEIGHTGAIN.jpg.82943ee26d5a090bc47bb87f0ec842c5.jpg

Unexpected Weight Gain

With Reverse Respiration, we not only observed no plant damage, after treatment, we actually measured a GAIN in mass.

What we found was the cleaned plant’s mass increased temporarily. 

This was not literal plant mass but actually the gas spaces within the plant, here, collectively referred to as the chymatous zones, filling with the CO2 solution.

24-PEARLING.jpg.f205534fa503904c3473c56cdfa31b61.jpg

PEARLING (internal gasses escaping the chymatous zones)

We found that an aquatic plant immersed in CO2 solution temporarily increases in mass, in concert with immediate “pearling.” This was further evidence of the chymatous zones filling with CO2 solution.

223876842_25-THECHYMATOUSZONES.jpg.f3eddbac6fd9369b8ac68bbbc5f2dd5f.jpg

Microscopic Image of Parenchyma

The Chymatous Zones

A variety of vacancies for gas exchange, respiration and buoyancy in plants are collectively known as the chymatous zones. Our intent was to demonstrate if these zones are indeed filling with our CO2 solution as an explanation for the mass gain. 

We needed to verify that the chymatous zones did indeed fill with the CO2 solution. Microscopic verification of this event was beyond our ken, so we elected to derive this mathematically.

We used data from a now historic 1994 study done on chymatic pressure and area in leaves, done at the Department of Plant Biology, Louisiana State University.

For this test specifically, we soaked a 671mG pothos leaf in CO2 solution for 12 hours. We calculated the chymatous zone area of this leaf sample and determined it could have enough vacancy to contain approximately 65uL of fluid if 100% of the internal gasses were displaced by water.

In 12 hours, a CO2-soaked leaf gained about 67uG of mass, nearly equaling the weight of 65uL of water! The gas spaces were capable of containing 65uL of fluid which weighed 67uG.

Yet within a 24-hour period, the plant had yielded back 98% of the weight gain, nearly returning to the original weight!

This suggests liberal fluid passage into and exiting the plant, via the chymatous zones.

Pressure Tactics

Extensive testing of internal fluid and gas pressures in plants was performed at the Department of Plant Biology, Louisiana State University. In that 1994 study, they found that an aquatic plant’s internal CO2 pressure is about 3.5X greater than the CO2 pressure in the surrounding water.

91900430_26-PRESSURETACTICSPNG-Copy.JPEG.4ba243fbe635771ab88060fab45a1f41.JPEG

The CO2 solution, however, is much higher pressure than the normal atmospheric CO2 and that of the plant. The unopened container of the CO2 solution has some 17X more pressure than the natural atmospheric CO2 pressure but almost immediately stabilizes at about 3X the normal atmospheric CO2 pressure upon opening, where it remains on average for approximately 72 hours if undisturbed.

2134094105_27-CO2SATURATIONOVERTIME.jpg.fed250ce45827bd5447222eb11afd93e.jpg

Undisturbed CO2 solution retains enough CO2 to prevent any O2 saturation for approximately three days. Blue is plain, CO2 solution. The same test was made on Diet Pepsi (red) showing the additives in Pepsi inhibiting the rate at which it goes flat.

A plant immersed in the CO2 solution begins to immediately fill the chymatous zones with roughly the same pressure CO2 as is throughout the solution, and within minutes, replaces all gasses from inside the plant with the CO2 solution. The CO2 solution is now both internal and external to the plant, effectively cancelling pressure impacting the plant.

1375129036_28-POTHOSLEAVES.jpg.0d376252507296170542c62aa43d1184.jpg

Pothos leaves deliberately hyper-stimulated with vibrational energy to simulate caustic conditions, performed in both plain water and in CO2 saturated water. The frontmost leaf was cleaned in plain water, and the leaf in the rear was cleaned in the CO2 solution.

If the pressure is the same inside and outside of the plant, the plant experiences no pressure.

We tested the pressure equalization theory by allowing the filling of the gas spaces in the leaves with the CO2 solution and then subjecting them to vibrational energy of normally fatal intensity. Notice the leaf cleaned in plain water (front) suffered significant damage, whereas the leaf cleaned in CO2 solution (rear) was nearly unscathed---further supporting the theory that having the same fluid inside and outside of the plant, the contiguity of masses---the energy is then the same throughout and around the plant, so relatively no energy impacts the plant.

Snails, Worms, Algae and Diatoms

Entities with more complexity than plants are less fortunate. Just 30 minutes in the CO2 solution eliminated 100% of the snails, worms and pests of all kinds, via asphyxiation.

Worms of all types seem to expire almost immediately. Snails expired by minute 20. Unhatched eggs, algae and diatom expiration required 12 hours.

Below: Images of parasites after being immersed in the CO2 solution for 30 minutes:

41062468_29-NEMATODESBEFORESOAK.jpg.9fee59523f906aad22deaa6978f9083c.jpg

Nematodes before CO2 soak

1917430985_30-NEMATODESAFTERSOAK.jpg.e4795030c53185e41ee74b307368958f.jpg

After 30 minutes in a CO2 solution. Nematodes lost most of their mass and most of their elasticity.

 

A Tough Egg to Crack

579898297_31-OSTRICHEGGS.jpg.d63aacb6226672ca76660b0b9aba3a14.jpg

Ostrich eggs

Eggs proved to be another matter altogether.

While the snails lost most of their color over a 30-minute treatment, (Snail Eggs-30 Minutes of Reverse Respiration) the embryos were still alive and in motion within the egg although their motion slowed considerably.

1556013725_32-SNAILEGGSAFTER30MLEFT.jpg.6a3b66fb363969792b43940f444e21c1.jpg 877984708_33-SNAILEGGSAFTER30MLEFT.jpg.f2a7646ea00811db78ae3a7dad7f74dd.jpg 

Snail eggs after 30 minutes (left) and 12 hours (right) in CO2 water

The snail egg on the left survived 30 minutes in CO2 solution but lost most of its coloration, and according to the study cited below, is likely sterile. (A study done in 2000 by the University of Miyazaki in Japan had demonstrated that nematode eggs subjected to 20% lower of oxygen levels than normal atmospheric levels for just 4 hours became unviable despite the still living embryo.)

However, the snail egg on the right was identical but was killed by 12 hours of asphyxiation in CO2 water.

Our intention was then to incubate the discolored eggs and watch for hatching. However, we found the 12-hour cycle of CO2 solution followed by just 30 minutes in aerated water (the “O2 cycle”) resulted in 100% expiration of all eggs and circumvented the need to do so.

 1075457498_34-SNAILEGG12HLEFT.jpg.0dc418122f77805e8a4dd09d8ae68214.jpg 252127407_35-SNAILEGG12HRIGHT.jpg.7d258dc705c1e0df559f7a84eb83f473.jpg

12 hours of CO2 solution effected 100% egg elimination: Microscope images of treated snail eggs. Note the internal fluid exits the dissolving egg on the left, leaving visible ripple patterns as the fluid leaked over the slide. Similarly on the right, we saw the embryo begin to dissolve and leak well into the egg.

Although algae were not a component in this test originally, when we observed Reverse Respiration’s tangential effects as an algaecide, we extended the tests to explore any parallelism amongst the egg and algae expiration, as they reacted quite similarly.

Most forms of algae we care about are simple, single-celled organisms that respire similarly as most plants. Yet despite algae using CO2 for respiration, the CO2 solution killed all forms of algae we tested within hours: Black Beard, Green Spot, Green Dust, Staghorn, Hair and Diatoms.

1387636194_36-GREENSPOTALGAE.jpg.d3600b4c91e07a4d9979ccc62db9e18b.jpg 372207554_37-HAIRALGAE.jpg.697b52faad84ba29360ed107ed46ecda.jpg 185477615_38-GREENDUSTALGAE.jpg.f25fdb70019f71b35ee1b024a2cd6558.jpg 672122292_39-BLACKBEARDALGAE.jpg.3687d75588fc213d691171dff457feca.jpg 1122177948_40-STAGHORNALGAE.jpg.5debdbec6b0b3cd84c63f987a804087f.jpg

                                    Green Spot Algae                                 Hair Algae                                 Green Dust Algae                       Black Beard Algae                         Staghorn Algae

Originally, we suspected that the algae death observed was caused by a lack of respiration. That is, the CO2 solution denying a cycle for O2 respiration, followed by an “O2 solution” (aerated water) denying CO2 respiration, killing the algae.

But algae death occurs far too quickly (<9 hours) for it to be respiratory…

pH Shifting

735209088_41-PHSHIFTING.jpg.385343a15324337cdd9de81218c50c22.jpg

PH Shifting is a widely used process that uses pH extremes to extract the proteins and specific nutrients from plants and algae. Common sports drinks with algae proteins often use precipitated plant proteins made through this method.

2072010392_42-SPIRALINA-Copy.JPEG.992e0952395566acbde27ea391c86808.JPEG 891820126_43-PROTEINPOWDER.jpg.a04a72c925067e51a0c49d5777d92026.jpg 2109350541_44-ALGAEPROTEINENHANCEDBEER-Copy.JPEG.734ed08a365b70df35fe5201aff8bf25.JPEG

How Reverse Respiration kills algae and eggs is not unlike the same action that is commonly used to create high protein, algae-based nutrient drinks: pH Shifting.

Normally the pH is raised greatly as chlorophylls, plant proteins and enzymes are more soluble in a higher pH. Once the plant proteins have dissolved into the solution, organic waste and other unwanted elements are filtered out. The pH is then quickly and drastically lowered to precipitate proteins and enzymes that are insoluble under acidic conditions (or pH is restored to neutral, and precipitates are removed electronically, known as ‘isoelectric precipitation’). This a generic explanation of pH Shifting as there are variations, but all operate in a similar fashion.

1610546784_45-ALGAEPROTEINSOLUBILITYPERPH.jpg.26ec3a563ce4a7bcb5d14eab7eb0e497.jpg

Algae protein solubility per pH

For our purposes, we employed a variation on this theme as precipitating the algae proteins is not for harvesting them but rather to act as an algaecide. Notice how the plant proteins begin to become insoluble as the pH falls, particularly so below a pH of 4.5.

The CO2 solution’s low pH of 3 precipitates most of the proteins and enzymes in the algae cells, destroying (denaturing) them in the process. Most of the precipitated algae cell contents, however, dissolve in the CO2 solution's acidic conditions, forming extremely minute quantities of carbonate salts that simply rinse off.

Plants have many proteins and enzymes, but chemically, all but one, chlorophyll-a, become unstable at a pH below 4. Although most plant enzymes are insoluble below a pH of about 4, chlorophyll-a remains viably active as low as pH 2!

1194199848_46-CHLOROPHYLL-ASTABILITYPERPH.jpg.9657f447dece0c1b0ef3ce0a62adb5fc.jpg182201100_47-CHLOROPHYLLLIGHTABSORBANCEPERPH.jpg.7d2517e7badbdcbb0a1146b8cbefbbba.jpg

          Chlorophyll-A Stability / pH                                 Chlorophyll-A Light Absorbance Efficacy / pH

BBA, GDA, GFA, GHA, GSA...R.I.P.

by @Guppysnail

1797457397_48-BBAGDAGFAGHAGSA...R.I.P..jpg.c3166fd9bf576637738c11f25c072ef7.jpg

 

While working on another project with plants soaking in the CO2 solution for an approximately a 12-hour period, something very unexpected was noted.  It involved various plants covered in various algae. Green Hair algae (GHA), Green Fuzz algae (GFA), Green Spot algae (GSA), Black Beard algae (BBA), Staghorn algae, as well as some plants completely coated and suffocating from brown diatoms. At the end of the day, the unused plants were placed back in the aquarium. 

But WAIT...where are the plants covered in brown diatoms? There they were appearing completely diatom free and vibrant once again.  A mystery is afoot! The other plants and algae were examined.  The green fuzz/hair algae appeared lighter, some near white and opaque. Other algae appeared unaltered.

·       The plants were returned to the aquarium for the evening.

·       Almost every shrimp in the tank converged on all types of dead algae. 

·       In the morning the brown diatom plants still had no trace of brown to the naked eye. 

·       The green hair/fuzz was entirely white and opaque and had been mostly consumed by the shrimp or dissolved. 

·       Plant leaves almost entirely covered with green spot algae were now partially cleaned of the GSA. 

·       The real shock was the plant nearly covered in Black Beard algae (BBA) and staghorn.  Every drop of the BBA and staghorn turned blazing red and was being consumed or dissolving.

A second test of this resulted in the same alteration to the algae but was returned to a tank with no inhabitants that would consume the altered algae.  Over the course of 72 hours, all types except GSA dissolved on their own. The GSA saw about half fall off. However, 100% of the GSA died and no more grew.

In yet another example, here we have BBA treated with Reverse Respiration, but I had no animals in the tank that would consume it, so its action as an algaecide is on display:

 393633494_48ABBABEFORECO2.jpg.9dccdcfc78cf63b7d082d3634c85cb6a.jpg      776395818_48BBBAAFTERCO2.jpg.18c64d89e51052a6b0bfd8b4fb45ba7c.jpg

BBA Before and After Reverse Respiration Treatment

Without any predators to consume the killed algae, the BBA turns white and slowly falls off.

At this point the prior project was paused and we investigated this avenue. 

We simply had to know why it kills all algae, but not plants.

The best potential for explaining our observations proved to be with diatoms. Diatoms have a different ratio of content such that there’s more non-chlorophyllic (brown enzymatic) content than green chlorophyll as opposed to common algae, yet it contains both.

This seemed ideal to test this theory as if it dissolved most of the brown content (non-chlorophyllic enzymes and proteins), but the green, chlorophyllic content remained, it strongly points towards pH shifting.

We found that virtually all of the algae proteins and enzymes are removed by Reverse Respiration, leaving expired or hollowed algae cells or cells simply incapable of a metabolic process. Only chlorophyll-a remains, such that the algae and even diatoms still appear bright green or form green patches due to the intense CO2 saturation of the chlorophyll-a (see below). However, in our testing, 100% of the algae samples turned red or white and died, as they no longer had any metabolic activity.

449249579_49-Diatomsafter12hoursinCO2solution-LEFT.jpg.8f6ff7ac8293bc1735f28df47cdf66c3.jpg 644594290_50-Diatomsafter12hoursinCO2solution-RIGHT.jpg.ab997aebe84c7375318f6525bf25b4af.jpg  

Diatoms after 12 hours in CO2 solution---all enzymes are gone, leaving hollow cell walls and chlorophyll-a (green) remnants.

     1091017439_51-BBAbeforeandafterCO2treatment-LEFT.jpg.1a87aa998d6c931ccb82097e7c3dcac1.jpg 139801667_52-BBAbeforeandafterCO2treatment-RIGHT.jpg.9c912ef9a232bd8332430279745ef77d.jpg

BBA before and after CO2 treatment

   789597184_53-HairAlgaebeforeandafterCO2treatment-LEFT.jpg.f4272efa4a6b526ffd8a3070b7a323b2.jpg 3759895_54-HairAlgaebeforeandafterCO2treatment-RIGHT.jpg.c4909b6a94cd363bd237c1e88d343e1b.jpg

Hair Algae before and after CO2 treatment

2084471795_55-DiatomsbeforeandafterCO2treatment-LEFT.jpg.c9d92f54c1de7e761d21c34917089987.jpg 2006037467_56-DiatomsbeforeandafterCO2treatment-RIGHT.jpg.e4ad1fabebf17ebabda77a1aa8ab0fe2.jpg

Diatoms before and after CO2 treatment

231752512_57-GSAbeforeandafterCO2treatment-LEFT.jpg.67eeb7951ef429cede2b8f253954851e.jpg 725939611_58-GSAbeforeandafterCO2treatment-RIGHT.jpg.6c170a8b54649894179609291802e0b9.jpg

GSA before and after CO2 treatment

In all instances, we found most of the cell’s content is largely gone (denatured), leaving large gaps in and between the cells:

  1731597314_59-DenaturedBBA-LEFT.jpg.32792f5c8aad68ecc4d1e5d96b76350a.jpg 1439522929_60-DenaturedBBA-RIGHT.jpg.b08d953f78ad0e45760a89b46b3f8bd2.jpg

Healthy BBA - Denatured BBA

Once again, the only enzymatic remnant we found was chlorophyll-a, hence the dark green (darker here as they are stained for the microscope) in all of the images. Chlorophyll-a remained because it is the only one stable in a pH of only 3, but chlorophyll-a alone is not enough for metabolic processes to continue, so the algae perish.

Timing is Everything

1394827046_61-TimingisEverything.jpg.22707d2dfee554f37d4a08401e53bbe6.jpg

Our final tests were to verify theories as to why algae perish within hours, whereas live plants seem immune and may actually enjoy growth augmentation from Reverse Respiration.

It’s all about time:

  1224732555_62-LeftNormalchloroplastandvascularactivity.jpg.c8b16c5d074f769c6339053c1ee04735.jpg 861106088_63-Right4daysReverseRespirationnoactivity.jpg.46eab8231051e4064e58c40a9114cde9.jpg     

                                                                          Left: Normal chloroplast and vascular activity                        Right: 4 days Reverse Respiration no activity            

Most algae are open to water flows, immediately and directly accessing water-borne gasses and nutrients, with no vascular systems to delay the process. This and other factors result in algae metabolizing at 10X to 50X the rate of terrestrial plants. Plants have a vascular system, a pseudo-circulatory system that requires time to bring gas and nutrients into the plant and distribute them. So, although it may appear stagnant, algae grow and perform nearly all metabolic activity much faster than plants.

497334955_64-ALGAEOVERGROWTHWITHKID.jpg.1bd4ebd1b82e051f9059c8440aecfd1d.jpg

“Why then, can one desire too much of a good thing?”- As You Like It, circa 1600

 While the vascular system (and being multicellular) protects plants from damage, we needed to determine if the CO2 solution ever damages the plants, for if not, it conflicts with our theories on why it kills algae so effectively. To that end we subjected the same anacharis plant to repeated (and unnecessary) treatments until we observed damage and found that the same action that kills algae will eventually kill live plants if the treatment is extended some 8X longer than the required treatment time. (It required a 12-hour treatment be extended to 96 hours to finally incur plant damage.) It is this inherent delay in the distribution of gasses and nutrients that allows the plants enough time to see the pests and algae expire, yet it avoids any damage to the plants as evidenced in these microscope images below of an anacharis plant being treated with Reverse Respiration (extended from 12 to 96 hours to test how long a vascular plant will tolerate this low pH):

1307015897_65-Day1-NormalVascularActivity.jpg.e66fed6d817561e278b5ada289cecdc5.jpg 1826540398_66-Day2-NormalVascularActivity.jpg.8e80c8843f539aa3a09a73836f4c512d.jpg

Day 1 - Normal Vascular Activity-Day 2 - Normal Vascular Activity

 627778762_67-Day3-VascularActivitysomeenzymaticdissolution.jpg.00dcfac8671e7869dba3dd0b880b5df3.jpg 979940985_68-Day4-NoVascularactivity.jpg.0cbade19ae98428a7326707a3a9647ec.jpg

Day 3 - Vascular Activity; some enzymatic dissolution-Day 4 - No Vascular activity

It took approximately 4 days before we witnessed any irreversible plant damage. The pests and algae are eliminated within 12 hours but live plants endure up to 96 hours without damage.

The Difference is Night & Day

1444105395_70-TheDifferenceisNightDayBULB.jpg.c475af49fb547de42d97544d0e2a1b57.jpg

Our initial intention for performing these treatments in the dark was that in darkness, the plants under treatment will not respire any O2, further depriving the pests of oxygen, therefore accelerating the expiration of the aerobic entities like pests and eggs.

We did somewhat unexpectedly observe that the rate of expiration of the algae accelerated in darkness substantially as well. The algae expired at more than TWICE the rate when treated in the dark. In fact, some 12-hour expiratory events shortened to as little as 30 minutes simply from being performed in the dark:

211556416_71-ThealgaeexpiredatmorethanTWICEtheratewhentreatedinthedark.CHART.jpg.72c6a54c3a027de9d3bce43f5413d4e0.jpg

These charts are derived from a 1977 study done at the Department of Vegetable Crops, UC Davis. The difference between chlorophyll reduction between light and dark treatments in the chart above is the interference of electrons in the algae with external, photonic energy. That energy taken by the CO2 solution takes the form of a photon (light), but in the dark, the energy (electrons) comes from the algae itself. 

 

“Nothing and Something Create Each Other”

(from Chapter Two, Tao te Ching, circa 500BC)

The findings above were quite significant for us, as they helped to confirm our theories of how Reverse Respiration utilizes available energy, be it photonic or electronic, to act as an algaecide.

1277111670_72-HALFDOMELIGHTNINGSTRIKE.jpg.8c835e29867615532b485cbd502cf5dd.jpg

Although it takes countless forms, mass, light, heat, x-rays, all are ultimately just energy. Be it a rock or a bolt of lightning, both are the same stuff, a form of energy. What a mass or a form of energy is defined as is relative and depends on the observer. 

It is the scale that creates the reality. If we were at the level of an atom inside of the rock, we’d see countless energetic particles moving near the speed of light. If we pull back, it’s just a motionless, dead rock. What makes it a mass is not inherent but rather where we observe it from. But in truth, it’s just the same stuff as the rest of the universe: energy.

The universal equivalence of energy is why Reverse Respiration kills algae more effectively in the dark.

A well know study done (see charts above) on the reaction of chlorophyll in various, acidic conditions (as well as many other plant cellular contents-testing performance in stagnant waters and other potentially acidic environments) was performed in 1977 at the Department of Vegetable Crops, at the University of California in Davis. It became well known because they perhaps not inadvertently, made the one of the first Quantum Biology demonstrations ever, 4 years before it became a viable theory, although that was not their goal. 

What they found was most cell content that was denatured or in the process of being denatured, did so at 2X-4X the rate in darkness than in light.

Herein lies the paradox as we're speaking of plants. The photons present in this case have nothing to do with photosynthesis.

As stated above, our original intent to keep the process in darkness was to prevent the plants from creating oxygen when we're trying to asphyxiate the pests! 

But what also occurred was an increased acceleration of the destruction of the algae. Without dwelling on the physics, in a nuclear environment, a photon can add energy just like an electron such that it can change the latter's behavior. 

So, if a proton (light) is present, sub atomically, it could "replace" an electron, leaving that electron unscathed, in this case, ignoring the electron in the algae because the photon supplied that energy, sparing at least some algae from being stripped of electrons.

However, RR kills algae is by stripping the electrons from the algae! So, if light is present, the number of electrons robbed from the algae will be reduced. This is why RR kills algae some 40% more quickly in the dark.

 

The conversion of photonic energy to electronic energy occurs in countless chemical and physical phenomena. Every digital camera or solar cell does this conversion by design.

But in truth, in this environment, so does the algae. But instead of Silicon being the vehicle of photon to electron conversion, here it’s (largely) the Magnesium in the algae.

While the presence of photons when discussing plants would suggest photosynthetic reactions, the action where the photons convert to electrons in this intense CO2 environment is about 10,000X more powerful than the strongest photosynthetic reaction, negating the latter as a factor in this environment.

Yet it’s effectively the same action. With solar cells and cameras, the electrons eventually become power or electricity sending visual signals.

With algae however, the CO2 solution removes and converts the algae Magnesium to a Magnesium Bicarbonate salt by stripping it from the algae and killing it.

Eventually once dried, the newly formed Magnesium Bicarbonate is unstable, it loses any remaining CO2 content and ultimately manifests as a white powder residue in the evaporate, Magnesium Oxide - a common antacid.

Below is a basic water test of plain water adjusted to a neutral pH of 7 and the same water used to dissolve the evaporate from a Reverse Respiration session. The insoluble solids are filtered out to compare the chemistry of the solutions.

The brown coloration being the cell contents stripped from the algae (as well as general dirt that the effervescence ‘scrubs’ off of the plants), now dissolved in the water. The white powder, the Magnesium Oxide precipitant, dissolves in the fresh water, raising the pH and alkalinity.

The rise in nitrate, nitrite and cyanuric acid are indicative of the brown, decaying organic matter from the algae and is relatively little. But the carbonate content is now quite literally, off the chart, as predicted in the nuclear model above:

 776552866_EvaporateWater-PlainWater.JPG.829418c7923ad3b2ff038b112073d1be.JPG  1826402859_RREvaporateTest.JPG.e04ec70cd3f40b48c3e2c2c09fdf9b9d.JPG

For a deeper peer into the subatomic governing this amazing reaction the entire study cited above is available for download in the PDF section at the end.

If you have less time, although the famous quantum theorist Schrödinger initiated the idea of Quantum Biology with his findings, that relatively new science (<40 years) was largely developed by the British physicist J. McFadden. He was kind enough to make popular videos explaining this phenomenon. They are low budget productions, but the content is priceless:

Professor Johnjoe McFadden's "Does Biology Need Quantum Mechanics?" at Imperial College London's 2014

 

The Solution is the Solution

Admittedly, the path to this solution was much more convoluted and complex than we had imagined, in part because our initial intention was solely to design a ‘chemical-free pesticide’ to clean aquatic plants. But observations soon resulted in expanding the testing and analysis to explore these parallel events, as it soon evolved into a multi-faceted, pesticide – algaecide – and growth stimulant.

1873859236_73-SELTZERBOTTLE.jpg.e33d8be8dd346cdcdde1100d60416805.jpg

Cleaning Aquatic Plants with Reverse Respiration

Providing scientific proofs involved months of testing, hundreds of references, several consultants (several COOP forum members!) and reviewing dozens of laboratory studies. Yet as convoluted as designing the procedure and providing proofs was, the resultant process was distilled down to an extremely simple solution, so long as one observes proper timing and lighting.

We found a literal and figurative solution by immersing the plants in carbonated soda or seltzer water for 12 hours in the dark followed by 30 minutes in aerated water, in the light. Plain, unflavored seltzer has the correct pH, pCO2 (pressure), anoxic state, and timing of decay to effect everything cited above in our testing. Aerated water is sufficient to serve as the O2-only portion of the cycle.

Reverse Respiration Instructions:  

1.     Immerse the plants entirely below the surface in freshly opened seltzer water. It should be an open lid container such that the pressure does not build. You may need to add a weight to keep the plants submerged as the effervescence and high pressure makes them highly buoyant.

2.     Place in the dark. Stir gently to help solution penetrate difficult areas but do not disturb once placed in the dark.

3.     Remove after 9 hours-12 hours. Rinse.

4.     Place in fresh water and aerate for a minimum of 30 minutes in the light. Rinse.

For all of the reasons cited above, in less than 24 hours, there will be no worms, no larva, no eggs, no snails, no algae, and all of the carbonation and excess oxygen will have dissipated,

the only residue being WATER.

 

IN MEMORIAM:

 552650085_74-Livesnailembryobeforeandafter12hoursofReverseRespirationLIVE.jpg.8e5be469b2ef9cd62dbd74566c7b9814.jpg 444933254_75-Livesnailembryobeforeandafter12hoursofReverseRespiration-DEAD.jpg.bc31ee5965c72f35217a8593640d10e9.jpg

Live snail embryo before and after 12 hours of Reverse Respiration

  1234024904_76-HairAlgaebeforeandafter12hoursofReverseRespiration-LIVE.jpg.a35163aa635df6a8a3ec1a8cc6d1b1d0.jpg 447695814_77-HairAlgaebeforeandafter12hoursofReverseRespiration-DEAD.jpg.1b047c7399b4f48d1e8183ed2a1898ea.jpg

Hair Algae before and after 12 hours of Reverse Respiration

  364201032_78-BBAalgaebeforeandafter12hoursofReverseRespiration-LIVE.jpg.d1240545cf8d4777194d0322451de503.jpg 856409807_79-BBAalgaebeforeandafter12hoursofReverseRespiration-DEAD.jpg.98b55606ebb5f8e3d1dc1ba7a7b53ce6.jpg

BBA algae before and after 12 hours of Reverse Respiration

  1318959559_80-GSAalgaebeforeandafter12-hoursofReverseRespiration-LIVE.jpg.52a02a13b26db18b66a7bd8dff608ddc.jpg 1743990110_81-GSAalgaebeforeandafter12-hoursofReverseRespiration-DEAD.jpg.a3f9eb5f1f45fa564c383f3a20369ff3.jpg

GSA algae before and after 12-hours of Reverse Respiration

        1880521401_82-DiatomsbeforeCO2.jpg.14e67e21c5e15a9209954e4cf9b9ba92.jpg 707835619_83-DiatomsafterCO2saturatedgreen.jpg.9cb86c45bf2579cb5f5abe9de54050dc.jpg 200079339_84-DiatomsClose-up--CO2saturated.jpg.45c208f7519143d6b322c12e51a3bc41.jpg

                                                        Diatoms before CO2                                           Diatoms after CO2, saturated green                                       Close-up--CO2 saturated

Plant damage (anacharis) after repeated, redundant Reverse Respiration treatments to test plant stress over a number of days:

615174679_85-Day1Healthy.jpg.4337286d924109b90bfcc99a0ae0c4e5.jpg 1669337420_86-Day2Healthy.jpg.06687663b83d65f2482b28182d239169.jpg 550986411_87-Day3MinorDamage.jpg.5ec1253b49e0aa12a50efedd2c214289.jpg 942988641_88-Day4Dead.jpg.380a87860a34e8d71ea368dbeebbda49.jpg     

                                                 Day 1 (healthy)                                    Day 2 (healthy)                               Day 3 (minor damage)                                Day 4 (dead).

In summary, after six months of testing and treating dozens of plants, in fourteen test tanks, at two facilities, we had zero pest survivors, zero surviving eggs, and…zero plants perished.

In fact, the opposite occurred…

Part Two (preview):

G R O W 508709189_89-TheTinGROWTH.jpg.0ea940a69d7815255a8a4eacfd239456.jpgH

Augmentation

What we observed in the subsequent days was beyond paradoxical. Our intent was to quantify how much plant damage occurs and if it is reversible. What occurred truly surprised us and extended the experiment to an estimated six additional months longer than previously intended.

The first obvious change in the plants upon immersion in seltzer is they become rigid and deeply green. Even crypts and vals stood straighter and more erect.

The relatively sudden environment of pure CO2 saturates the chlorophyll in the plants, making them a deep, intense green within hours. In addition, the seltzer replacing the gases in the chymatous zones add mass and rigidity to the plants.

But it did still more.

We measured the mass of a hornwort sample in the control tank vs. the same after the first cleaning session. Just days after the cleanings, we noticed that the hornwort that was cleaned appeared brighter, greener and slightly larger. In the days to come, the hornwort subjected to treatment became much larger than the original control batch.

Inside of a month, the cleaned hornwort was some 80% larger than the control (untreated) hornwort!

External energetic stimulation of plant tissue to accelerate growth is in common use. While it’s not fully understood, applying external energy to plants, seeds, and roots seems to have a similar effect on plants as light energy.

The growth stimulation in both cases was short lived though. It seems to accelerate for several weeks, producing longer, taller, and thinner plants initially, which eventually linearizes to normal growth and appearance. We noticed the growth of the control hornwort ‘caught up’ with the treated hornwort after an additional 4-5 weeks.

And while many studies have been done, one famous study done at the Tokyo Institute of Technology in 2014 cited some theoretical possibilities. This study, which was done on the effects of externally applied energy to radishes, had shown accelerated growth up to a staggering 87%-150%!  The study noted that auxins, plant hormones that regulate growth, saw their production greatly stimulated after the treatments. In fact, they grew so rapidly that they distorted the shape and size of the plant, albeit temporarily. In a matter of weeks, growth normalizes.

However, this is just preliminary. The sheer magnitude of the potential for growth augmentation, improved plant survival and ‘melt’ acceleration from Reverse Respiration, and unusual applied energy treatments caused us to extend the experiment to include growth stimulation and plant survival efficacy tests. We will have data on several types of plants, their growth, survival rates, ‘melt’ acceleration, growth rate, mass and nutrient uptake.

We’re currently testing three methods for applying external energy to aquatic plants that are easily applied at home. We’ll be testing not only for growth but for changes to classic ‘melting’ in delicate species, growth efficacy and survival rates.

MUCH more on this is to come, as testing is in process now, but naturally, it will take several months for the data to mature.

Please return for…

Part Two:

G R O W 508709189_89-TheTinGROWTH.jpg.0ea940a69d7815255a8a4eacfd239456.jpgH

Augmentation

 

 *******

 

ADDENDA

In this section we intend to post new findings from ourselves, other users or any meaningful contributions to the experiment. Posts in this section may be unproven or theoretical and are noted as such if so. 

 

 

Addendum-1:

SODA POPS

615792017_FrequencyofCarbonation.jpg.13c8c26201d1a129ea5302deb9900182.jpg

A study performed at the University of Austin in 2018 was done on champagne to determine oscillation rates of the bubbles.

 Some have rightly raised the difficulty of cleaning plants that are deeply netted or suffer difficult to penetrate areas; that is, the formation of ‘micro pockets’ of trapped air or even water, shielding the pests we’re trying to eliminate. This of course is an issue with all forms of treatment in a liquid that is static.

One of the interesting byproducts of using a carbonated liquid as the cleaning agent is that the liquid is dynamic or in continuous motion.

While trapped, protected areas must exist to some extent, the following could suggest that the survival of ‘micro pocket shelters’ in carbonated water is far less likely than static cleaning solutions.

The tests performed for the study above at the University of Austin in 2018 were done on champagne but we performed our own and found very similar results with seltzer water.

Seltzer effervesces at an amazingly predictable rate. In fact, it bubbles at many rates but at two rates primarily. These rates don’t vary much over time, but they do lose intensity over time.

These rates are known as oscillations as seen in the oscilloscope image below:

1596162230_DSC_0062(3).JPG.ef04d2cd66945820193ea06ee2767951.JPG

Seltzer water has two dominant oscillations, one being infrasonic at about 1-3 times a second (1Hz-3Hz) and another much higher at about 7000 times per second (7kHz). The low frequency, infrasonic vibration of the first oscillation literally shakes the plant during the entirety of the bath.

Simultaneously, the approximately 7000Hz oscillation behaves not unlike a pseudo ultrasonic cleaner as it forms immeasurable amounts of microscopic bubbles which pop, sending vibrational energy throughout the solution.

Our hypothesis is that this energy is strong enough to penetrate microscopic nooks and crannies or to burst standing air or water and dislodge most anything from the plants' surface with surprising power, known as ‘cavitation.'

1898529878_SodaPops.jpg.28af89b8be3bcdd6bc0b08db1963ca9e.jpg

This is known as cavitation and is how commercial ultrasonic cleaner’s work.

Although we did not test this, we saw no pests or eggs survive even after 6 months. Of course, the degree of any additional deep cleaning and penetration this affords is speculation at this point.

However, it could suggest that a combination of the very high pressure of seltzer with the mechanical cleaning action of the seltzer bubbles cavitating should at least improve the likelihood of micro pocket penetration.

As an example of the incredible pressure, here the 300:1 pressure of seltzer water applied to algae cells forces the contents almost completely out of Marimo algae cells at around second 45 in the video:

Marimo Algae Drained by CO2 Pressure

 

Here is a sample of the recording of the oscillations in seltzer. A hydrophone was immersed in seltzer to measure the frequencies of the oscillatory energy.

If you listen closely, you can hear the very high frequency ‘whistle’ of the fast, microscopic cavitation bubbles popping en masse along with the low rumble (and occasional large bubbles crashing into the microphone!) of the much larger, effervescence bubbles:

Recording of Seltzer Oscillations

 

This addendum is speculative and has not been tested beyond what is presented here.

*******

The Cinema

2128797101_90-TheCinema.jpg.d19fe1629c35d4a25161a669b6b3510a.jpg

Below are links (Ctrl + Click) to microscope videos we shot during the test period (10X-2500X, 40x magnification unless otherwise noted). They show various entities in the tests and provide a live, microscopic look into the eggs, how they protected the snail embryos, and how they eventually expired. Seventy-two microscope videos were shot for these tests, all of which are available for your viewing or to download here:

Aquatic Animals and Eggs used in Reverse Respiration Tests under Microscope

Aquatic Plants used in Reverse Respiration Tests under Microscope

1547912844_91-REFERENCES-Copy.jpeg.e326e70b4016e81dc2f2170c6d01acfc.jpeg

References

PDFs of the Studies Below - Download Link

Urban Forest Research Center, National Institute of Forest Science, Seoul, Agricultural and Life Sciences, The University of Tokyo, Yayoi 1‑1‑1, Bunkyo‑ku, Tokyo

 

Judit Dobránszki (2021) Application of naturally occurring mechanical forces in in-vitro plant tissue culture and biotechnology, Plant Signaling & Behavior, 16:6, 1902656,

 

PQM-1 controls hypoxic survival via regulation of lipid metabolism

Thomas Heimbucher, Julian Hog, Piyush Gupta & Coleen T. Murphy

 Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA

 Banerjee N, Hallem EA

 

(2020). The role of carbon dioxide in nematode behavior and physiology. Parasitology 147, 841–854.

 

Aerenchyma formation in the rice stem and its promotion by H2O2

Bianka Steffens, Thomas Geske and Margret Sauter

Physiologie und Entwicklungsbiologie der Pflanzen, Botanisches Institut, Universita¨t Kiel, Germany

 

Photosynthetic Response to Elevated Carbon Dioxide Concentrations in the aerenchyma of Typha Latifolia L. Leaves.

John Van horne Constable 1993

Louisiana State University and Agricultural & Mechanical College

 

Precision and Intelligence Laboratory, Tokyo Institute of Technology,Nagatsuta-cho

 

Batangas State University, College of Engineering, Architecture and Fine Arts, Pablo Borbon Main II, Alangilan, Batangas City, Philippines

 

Batangas State University, College of Engineering, Architecture and Fine Arts, Pablo Borbon Main II, Alangilan, Batangas City, Philippines

 

Emerson Process Management Beverage (Carbonated Drink) - De-aeration

 

J. Aquat. Plant Manage. 45: 76-83

In-vitro Investigations on Ultrasonic

Control of Water Chestnut

MEI-YIN WU1 AND J. WU

Corresponding author: Center for Earth and Environmental Science,

State University of New York, College at Plattsburgh

Department of Physics, University of Vermont

 

Aerenchyma Carbon Dioxide Can Be Assimilated in Typha latifolia L. Leaves

John V. H. Constable and David J. Longstreth

Plant Physiology

 

Volume 52, Issues 1–2, September 1995, Pages 93-106

Aquatic Botany

 

CO2 and O2 transport in the aerenchyma of Cyperus papyrus L.

Michael B.Jones

 

Broad oxygen tolerance in the nematode Caenorhabditis elegans

W.A. Van Voorhies, S. Ward

Author and article information

J Exp Biol (2000) 203 (16): 2467–2478.

https://doi.org/10.1242/jeb.203.16.2467-15 AUGUST 2000

 

On cryptobiosis and anoxibiosis:

 

N. Dasgupta, A. M. Patel, B. A. Scott, C. M. Crowder, Hypoxic preconditioning requires the apoptosis protein CED-4 in C. elegans. Curr. Biol. 17, 1954-1959 (2007). [PubMed]

Oxygen-Starved Worms

JOHN F. FOLEY

SCIENCE'S STKE • 27 Nov 2007 • Vol 2007, Issue 414 • p. tw432 • DOI: 10.1126/stke.4142007tw432

Van Voorhies WA, Ward S. Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol. 2000;203(Pt 16):2467–78. Epub 2000/07/21.

 

Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan

 

The Aquatic Gardener 10 (1997): 126-131 Water Plants 101: Dave Huebert

A. M. Humphrey, “Chlorophyll as a color and functional ingredient,” Journal of Food Science, vol. 69, no. 5, pp. 422–425, 2004.

 

Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects Aris Hosikian, Su Lim, Ronald Halim, and Michael K. Danquah Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria (2010)

“Fluorescence measurements of free Mg2”  Elisabeth M Froschauer, Martin Kolisek, Frank Dieterich, Monika Schweigel, Rudolf J Schweyen, Max F Perutz Laboratories Department of Microbiology and Genetics University of Vienna Campus Vienna Biocenter, Dr Bohrgasse 9 A1030 Vienna Austria

“Water content quantitatively affects metabolic rates over the course of plant ontogeny”

State Key Laboratory of Grassland AgroEcosystem School of Life Sciences Lanzhou University Lanzhou 730000 China, College of Forestry Southwest Forestry University Bailongsi China, Department of Biological Sciences Missouri University of Science and Technology, School of Integrative Plant Science Plant Biology Section Cornell University

“Determination of elements in algae by different atomic spectroscopic methods”

(MG2++ and Carbonic Acid analysis) Attila József University Department of Inorganic and Analytical Chemistry Szeged Hungary, Albert Szent Györgyi Medical University Department of Pharmacognosy Szeged Hungary, School of Pharmacy Portsmouth Polytechnic Portsmouth UK

Studies on Sonication of Plants for Accelerated Growth:

Sonication and ultrasound: Impact on plant growth and development

Beneficial effects of ultrasound on plants—a review - ScienceDirect

 

TOVATECH

Tovatech - The Source for Ultrasonic Cleaners & Lab Equipment for More than 10 Years.

Greenhouse Product News

Effects of Blue Light on Plants

Erik Runkle

FEBRUARY 2017

 

Ultrasound has been investigated as a control for zoo[1] plankton in ballast water.

Holm et al. (2008) tested ultrasound effects on a cladoceran (Ceriodaphnia dubia), rotifers (Brachionus plicatilis, B. calyciflorus, and Philodina sp.), and brine shrimp (Artemia sp.).

 

The Potential Use of Ultrasound to Control the Trematode Bolbophorus confusus by Eliminating the Ram's Horn Snail Planorbella trivolvis in Commercial Aquaculture Settings

Bradley T. Goodwiller & James P. Chambers, Pages 485-488  Sep 2012

 

Ultrasound has been investigated as a method for zebra mussel (Dreissena polymorpha) control. (Kowalewski et al. 1993, Donskoy and Ludiyanskiy 1995).

 

Donskoy and Ludiyanskiy (1995) cite research in which ultrasound ranging from 20kHz to 380kHz was used to induce cavitation and mortality in veliger, juvenile, and adult zebra mussels.

 

The Potential Use of Ultrasound to Control the Trematode Bolbophorus confusus by Eliminating the Ram's Horn Snail Planorbella trivolvis in Commercial Aquaculture Settings

Bradley T. Goodwiller

& James P. Chambers

Pages 485-488 | Received 27 Jan 2012, Accepted 09 Apr 2012, Published online: 10 Sep 2012

 

Ultrasonics Sonochemistry

Volume 13, Issue 5, July 2006, Pages 446-450

Ultrasonics Sonochemistry

Ultrasonic frequency effects on the removal of Microcystis aeruginosa

2005.09.012

Effects of ultrasound irradiation on the growth of Japanese radish sprouts. Marie Tabaru[1], Ryusuke Fujino and Kentaro Nakamuray

 

Electrical Stimulation and Effects on Plant Growth in Hydroponics

Bonghwan Kim and Kyunghan Chun

University of Daegu

 

Solar-Powered Electroculture Technique For Backyard Farming

Elenor M. Reyes, GlennJordan M. Achico

 

Accelerated Plant Growth--https://www.motherearthnews.com/organic-gardening/plant-growth-zmaz84mjzloeck/

Molecular strategies for improving waterlogging tolerance in plants

E.S. Dennis, R. Dolferus, M. Ellis, M. Rahman, Y. Wu, F.U. Hoeren, A. Grover, K.P. Ismond, A.G. Good, W.J. Peacock

Journal of Experimental Botany, Volume 51, Issue 342, January 2000, Pages 89–97

Determination of elements in algae by different atomic spectroscopic methods.

Chlorophyll Destruction by the Bisulfite-Oxygen System'
1977-PEISER/YANG
Department of Vegetable Crops, University of California, Davis, California

Professor Johnjoe McFadden's Presentation "Does Biology Need Quantum Mechanics?" at Imperial College London's Festival of Science 2014

 

 1043195113_ReverseRespirationLogoCROPPED.jpg.846afdffdd7a18531e023eaaf6b34c2a.jpg

51-BBA before and after CO2 treatment-LEFT.jpg

I think @OnlyGenusCaps @Odd Duck @dasaltemelosguy and @Guppysnail might be pleased by the fact that my science teacher loves this! Good Work!

  • Like 2
  • Thanks 2
Link to comment
Share on other sites

I did a search of the thread and didn't see mentions on the effect of RR on Cyanobacteria. So I figured I's show you what I've seen! I can't confirm this is Cyano, but the color and stench certainly makes me think it is. It has impacted a pad of Java Moss in my 10 gallon Pygmy Cory tank, and hasn't really spread beyond that. So I put it in seltzer overnight (wound up being a hair over 12 hours) and gave it aerated water for a little while this morning. There's still a bit of Cyano, where I believe the moss may have floated, but the reduction is pretty dramatic. I'm going to give it a week to see if the remainder dies off. If it starts growing again, I'll repeat but with it weighed down.

DSCF3123.jpg.2acb993b5ed7e76157febd23f3a2d2de.jpg

Before

DSCF3129.jpg.821b55d6f60e355fae248606928e8e27.jpg

After

DSCF3131.jpg.253c37f402fb19cabd50666fccbe5256.jpg

After

  • Like 2
  • Love 2
Link to comment
Share on other sites

You could also spot treat that area with a bit of peroxide.  Shut off all filters and in still water, squirt the peroxide directly over the affected area.  I never use more than 3 mls per gallon of 3% peroxide and rarely use that much for a single spot treatment.  Leave the filters off for 10-20 minutes, then restart them.

Try not to squirt the peroxide over any livestock and be aware that it sinks through the water so you’ll be treating anything below the spot where you’re aiming.  For a small area like this, you may only need 2-3 mls (about half a teaspoon).  It will likely turn red in a few hours and your cleanup crew will usually take care of it after that.  The peroxide is HARSHER on plants than RR but treating such a small spot should be very safe as long as you don’t overdo.

  • Like 4
Link to comment
Share on other sites

Just wanted to post an update in reference to my post below:

 

Some days after my experiment all but the Sword and 2 Marimo balls (so basically Java fern and Guppy grass, I left a couple of questionable rhizones in there) had to be pulled out of the QT and tossed- they didn't make a recovery. This could entirely be because they might have been too far gone. My Marimo have a lot of brown spots so I'm not sure if they will make it either. The tank is going back to its algae state unfortunately but I plan on cleaning it this weekend- it doesn't seem at least so far that the amazon sword is being attacked by the algae so hopefully I can keep it mitigated. 

Edited by xXInkedPhoenixX
  • Like 3
  • Thanks 1
Link to comment
Share on other sites

I bought seltzer water for my order of 1 java fern, 1 anubias, and dwarf water lettuce that arrived today in the mail.

The non-dwarf water lettuce I got a week ago melted hard after RR and the newbie conditions in my tank.  I don't think it was RRs fault.  I closed the lid on it which pushed the above-water leaves below the waterline.  There's also a good bit of surface agitation and it took a couple of days before i  put them in a corral, which helped a lot.

Do new water lettuce leaves look like knuckles? 

  • Like 2
Link to comment
Share on other sites

I have not been following this topic until just recently and have not had time to read through all 15 pages yet, but thanks to those who have run the experiments trying this out. I have a couple of tanks that are just over run with Malaysian trumpet snails, I have cut back feeding, and there are still a ton of them. I had a thought of removing the fish that are in the tank and putting them into one of my QT tanks for a bit and turning my co2 way up, to try to kill them off. Does anyone think that this would work, or would I not be able to get enough co2 to absorb into the water?

  • Like 3
Link to comment
Share on other sites

On 11/14/2022 at 6:39 AM, Andy's Fish Den said:

I have not been following this topic until just recently and have not had time to read through all 15 pages yet, but thanks to those who have run the experiments trying this out. I have a couple of tanks that are just over run with Malaysian trumpet snails, I have cut back feeding, and there are still a ton of them. I had a thought of removing the fish that are in the tank and putting them into one of my QT tanks for a bit and turning my co2 way up, to try to kill them off. Does anyone think that this would work, or would I not be able to get enough co2 to absorb into the water?

You might be able to with them being livebearing and not dealing with eggs but I’m not certain. I would be curious to see if this worked. RR with seltzer will wipe out all beneficial bacteria so I would suggest removing the filtration and housing it in a bucket somewhere while you do this so you don’t lose everything from the cycle that way you can start your tank over more quickly. I don’t know if the CO2 from a dispenser could get high enough to kill your bacteria but I know the bacteria are very sensitive the low oxygen conditions.

Good luck and keep us posted I’d be curious to see if they just all went up to the top to surface breathe I don’t know if Malaysian trumpet snails can do that or not I’ve never kept them. 
 

I would also stop running all air or anything that agitates the water that way you can get the highest concentration of CO2 possible with your system

Edited by Guppysnail
  • Like 3
Link to comment
Share on other sites

On 11/14/2022 at 7:09 AM, Guppysnail said:

You might be able to with them being livebearing and not dealing with eggs but I’m not certain. I would be curious to see if this worked. RR with seltzer will wipe out all beneficial bacteria so I would suggest removing the filtration and housing it in a bucket somewhere while you do this so you don’t lose everything from the cycle that way you can start your tank over more quickly. I don’t know if the CO2 from a dispenser could get high enough to kill your bacteria but I know the bacteria are very sensitive the low oxygen conditions.

Good luck and keep us posted I’d be curious to see if they just all went up to the top to surface breathe I don’t know if Malaysian trumpet snails can do that or not I’ve never kept them. 
 

I would also stop running all air or anything that agitates the water that way you can get the highest concentration of CO2 possible with your system

Thanks for the reply, I was wondering if they would go to surface to try to breathe the air directly, and had not thought about killing off BB in the filters. I wonder if I would seal off the top of the tank with saran wrap and tape it good as well if then any co2 that didn't dissipate in the water would then get trapped in between the water surface and the plastic wrap so if the snails did go to the surface they would then be breathing co2. I might have to try this out next week when I am off for vacation. 

  • Like 2
Link to comment
Share on other sites

On 11/14/2022 at 2:07 PM, Andy's Fish Den said:

Thanks for the reply, I was wondering if they would go to surface to try to breathe the air directly, and had not thought about killing off BB in the filters. I wonder if I would seal off the top of the tank with saran wrap and tape it good as well if then any co2 that didn't dissipate in the water would then get trapped in between the water surface and the plastic wrap so if the snails did go to the surface they would then be breathing co2. I might have to try this out next week when I am off for vacation. 

I would love to see you try it. I know they fumigate  greenhouses with CO2 to kill pests. I wonder if above the water could be the same. I would do it in the dark. That way your plants are not producing oxygen but taking in any remaining oxygen and putting out more CO2. 

Edited by Guppysnail
  • Like 2
Link to comment
Share on other sites

On 11/14/2022 at 2:12 PM, Guppysnail said:

I would love to see you try it. I know they fumigate  greenhouses with CO2 to kill pests. I wonder if above the water could be the same. I would do it in the dark. That way your plants are not producing oxygen but taking in any remaining oxygen and putting out more CO2. 

Good point about the darkness vs light.

  • Like 1
Link to comment
Share on other sites

@Andy's Fish Den, that’s a very interesting idea. I can’t say for certain but there’s a couple of anecdotal observations of my failures that suggest it probably isn’t strong enough to do what you need though.

The amount of CO2 in the water is directly related to the pH. Or better said, the pH drops as the CO2 increases.

Seltzer has so much CO2, it manifests a pH of only 3. I once tried using Perrier instead of seltzer because the store had no seltzer or club soda at that time. Perrier has enough CO2 to have a pH of 6. I was quite surprised when this failed to kill anything. Snails walked along the sides and in and out of the water as they pleased.

Seltzer having a pH of only 3 indirectly indicates it has far more CO2 than Perrier and I now know Perrier didn’t work. So, the amount of CO2 you can put in the water may be indirectly ‘measured’ by testing the pH.

Oxygen is more soluble in water than CO2 so in all probability, you can only reach CO2 levels strong enough to effect Reverse Respiration if it is pressurized. So unfortunately, without pressurization, the oxygen will not leave the water.

Also, in one of @Irene's fantastic plant treatment videos, she used alum which creates about as much CO2 in water as is possible without it being pressurized. Yet the MTS survived it. And that was 2 or 3 days (I forget) in alum. 

One possibility is the snail's operculum seals so well; it protected them. The other being despite the large amount of CO2 in alum water, without pressure, the O2 remains. 

But every test done with RR killed the MTS. This would suggest it’s due to it being pressurized and it simply ‘forces’ it’s way past that protection. That and the amount of CO2 is massive given a pH of only 3. Pressurization also forces all of the O2 and N2 out of the water.

Another possible explanation for the MTS kills might be the penetration of difficult areas is very likely given seltzer’s vibrational nature. At the end of the RR article there’s a short piece on this. It behaves as a mild, giant ‘jewelry cleaner’ in effect. With all of this factored in, you’d probably have the most success with filling the tank with seltzer.

It's anecdotal, but probable. Thanks for adding to the think tank. Keep us posted! 

  • Like 3
  • Love 1
Link to comment
Share on other sites

@dasaltemelosguyI have had some of the same thoughts that you laid out there as far as the seltzer water being pressurized and the darn snails being able to survive pretty much anything. I think that MTS would survive a nuclear attack. I am not sure that I want to buy enough bottles of seltzer to fill a 40 gallon tank to try to eradicate the  snails. I had the thought of covering the tank tightly with plastic wrap and even taping it along the edges so that it would hopefully hold in any co2 that didn't dissipate into the tank, and ended up making it to the surface and going into the air. That way, if the snails made their way up to the surface to try to breathe air, instead they would be breathing in co2. 

  • Like 2
Link to comment
Share on other sites

  • 2 weeks later...
  • 2 weeks later...

Finally read through all of this and it is *awesome*! I immediately told my wife about it and she reminded me that in the restaurant industry, they use seltzer water to clean beer taps and soda gun nozzles. This is all clicking for me in the best way. Cannot wait to try it! 

Edited by Jennifer V
  • Like 1
  • Thanks 1
  • Love 1
Link to comment
Share on other sites

  • 2 weeks later...

I've got two bottles and might run another test on either moss or rocks. Need glue to reattach the moss if I go that route.

I briefly tested / mentioned hardscape before and I'm specifically talking seiryu stone.

Apart from a peroxide dip. Is there something going on that would cause RR not to work for that application? Something like lava or ohko has bigger cavities, but seiryu is pretty flat and hard with some small pores I'm trying to get this black beard out of.

Link to comment
Share on other sites

On 12/15/2022 at 7:58 PM, nabokovfan87 said:

I've got two bottles and might run another test on either moss or rocks. Need glue to reattach the moss if I go that route.

I briefly tested / mentioned hardscape before and I'm specifically talking seiryu stone.

Apart from a peroxide dip. Is there something going on that would cause RR not to work for that application? Something like lava or ohko has bigger cavities, but seiryu is pretty flat and hard with some small pores I'm trying to get this black beard out of.

I do not understand why you would not use peroxide on hardscape. It’s faster. 

  • Like 1
Link to comment
Share on other sites

On 12/15/2022 at 5:15 PM, Guppysnail said:

I do not understand why you would not use peroxide on hardscape. It’s faster. 

I have. Didn't work.

At this point I'm ready for bleach.

I'm asking because I want to do a side by side test and it was mentioned elsewhere that it "won't work" and I'm trying to understand why. Wood. I get it. Seiryu, maybe it's a PH thing? Not sure.

It didn't work before.

Link to comment
Share on other sites

On 12/15/2022 at 8:50 PM, nabokovfan87 said:

I have. Didn't work

I have never seen peroxide soak not work on BBA on hardscape. I really don’t understand where you are going wrong so I’m sorry can’t help you out here. Whatever you are trying to test side by side is not applicable to RR. 

  • Like 2
Link to comment
Share on other sites

On 12/15/2022 at 6:24 PM, Guppysnail said:

I have never seen peroxide soak not work on BBA on hardscape. I really don’t understand where you are going wrong so I’m sorry can’t help you out here. Whatever you are trying to test side by side is not applicable to RR. 

I totally understand. That's why I'm trying it again with more clear directions. I want to see what will get rid of this stuff and what won't.

Link to comment
Share on other sites

On 12/15/2022 at 11:02 PM, nabokovfan87 said:

I totally understand. That's why I'm trying it again with more clear directions. I want to see what will get rid of this stuff and what won't.

I’m curious if you are trying to use peroxide and seltzer like a cleaning solution since you are working with hardscape. 
Neither will work as a cleaning solution. They only kill it. You then have to scrub hardscape. I use cheap nail brushes from Amazon or Walmart. The bristles get in the nooks and crannies. 
If you have cleaned it off the hardscape and it returns then it is an imbalance in the tank condition. 
Hope that helps a bit. 

  • Like 2
Link to comment
Share on other sites

On 12/16/2022 at 3:54 AM, Guppysnail said:

I’m curious if you are trying to use peroxide and seltzer like a cleaning solution since you are working with hardscape. 
Neither will work as a cleaning solution. They only kill it. You then have to scrub hardscape. I use cheap nail brushes from Amazon or Walmart. The bristles get in the nooks and crannies. 
If you have cleaned it off the hardscape and it returns then it is an imbalance in the tank condition. 

Agreed. Working on it. I'm going to be using an electric toothbrush on the next test run.

I'm getting another bloom but this time the amanos have been helping. Making me think one type died, this is a different type.  It has a slightly different look to it, but difficult to tell.

I made more changes, fixed more issues, broke a diffuser on accident, and hopefully things "settle down" and then I can go ahead and run the test. I have about 4-5 portions of moss I need to treat and reglue. Then go through everything again.

I'm just trying to figure out where I went wrong, but also fix issues.

Thank you for the help, will do!

  • Like 2
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...